Answer:
[tex]$\sum_{n=1}^{10} -3(-1)^{n} \hspace{3}2^{n-1} $[/tex]
[tex]n\in N[/tex]
Step-by-step explanation:
First, as you can see, the sequence is alternating its sign everytime, so you can deduce this term:
[tex](-1)^{n}[/tex]
The sequence start from 3, and the following terms are the product between 3 and [tex]2^{n-1}[/tex]. Take a look:
For n=1
[tex]3*2^{1-1} =3*2^{0} =3*1=3[/tex]
For n=2
[tex]3*2^{2-1} =3*2^{1} =3*2=6[/tex]
And so on...
Let's verify the formula including all terms:
Since the sequence start from 3, we must change the 3 for -3. Because [tex](-1)^{n}[/tex] is always negative for the first term:
For n=1
[tex](-1)^{1} \hspace{3}-3*2^{1-1} =(-1)-3*2^{0} =(-1)-3*1=3[/tex]
For n=2
[tex](-1)^{2} \hspace{3}-3*2^{2-1} =(1)-3*2^{1} =(1)-3*2=-6[/tex]
For n=3
[tex](-1)^{3} \hspace{3}-3*2^{3-1} =(-1)-3*2^{2} =(-1)-3*4=12[/tex]
For n=4
[tex](-1)^{4} \hspace{3}-3*2^{4-1} =(1)-3*2^{3} =(1)-3*8=-24[/tex]
So, one possible sequence is:
[tex]a_n=-3(-1)^{n} \hspace{3}2^{n-1}[/tex]
And the serie would be given by:
[tex]$\sum_{n=1}^{10} a_n $ = $\sum_{n=1}^{10} -3(-1)^{n} \hspace{3}2^{n-1} $[/tex]