Respuesta :
Answer:
t = 8.311 years
Step-by-step explanation:
Where: t = log(A/P) / n[log(1 + r/n)]
Answer:
[tex]\huge \boxed{\mathrm{8.3 \ years}}[/tex]
Step-by-step explanation:
[tex]\sf A=P(1+r)^n \\\\\\ A=final \ amount \\\\ P=principal \ amount \\\\ r=rate \ (\%) \\\\ n=number \ of \ years[/tex]
Applying the formula to solve for the number of years.
[tex]\sf 2500=2200(1+1.55\%)^n[/tex]
[tex]\sf 2500=2200(1.0155)^n[/tex]
Dividing both sides by 2200.
[tex]\sf \displaystyle \frac{25}{22} =(1.0155)^n[/tex]
Take log of both sides and divide both sides by log(1.0155).
[tex]\sf \displaystyle \frac{log( \frac{25}{22})}{log(1.0155)} =n[/tex]
[tex]\sf 8.311067=n[/tex]
It will take 8.3 years (rounded to nearest tenth) to earn enough money to go on the trip.
Otras preguntas
