Answer:
[tex]a_{1} = \frac{-16}{3}[/tex]
Now the Geometric sequence
[tex]\frac{-16}{3} , 8 ,-12 ,18 ,-27[/tex]
Step-by-step explanation:
Step(i):-
Given second term is '8'
[tex]t_{n}= a r^{n-1}[/tex]
[tex]t_{2}= a r^{2-1}[/tex]
[tex]a r^{2-1} = 8[/tex]
a r = 8 ...(i)
And also given fifth term is -27
[tex]t_{5}= a r^{5-1}[/tex]
[tex]a r^{4} = -27[/tex] ...(ii)
Step(ii):-
Now simplify
[tex]\frac{a r^{4} }{ar} = \frac{-27}{8}[/tex]
[tex]r^{3} = \frac{-27}{8}[/tex]
[tex]r^3 =\frac{(-1)^{3} (3)^{3} }{(2)^{3} }[/tex]
[tex](r^3)^{\frac{1}{3} } =(\frac{(-1)^{3} (3)^{3} }{(2)^{3} })^{\frac{1}{3} }[/tex]
On simplification, we get
[tex]r = \frac{-3}{2}[/tex]
now from(i)
a r = 8
[tex]a(\frac{-3}{2} ) = 8[/tex]
[tex]a = \frac{-16}{3}[/tex]
[tex]a_{1} = \frac{-16}{3}[/tex]
Now the Geometric sequence
[tex]\frac{-16}{3} , 8 ,-12 ,18 ,-27[/tex]