Respuesta :
Answer:
Eric
Step-by-step explanation:
First, we determine the distance of each player to the hole using the distance formula.
Given points [tex](x_1,y_1)$ and (x_2,y_2)[/tex]
Distance[tex]=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Eric
The hole is at (3,2)
Eric's golf ball is at point (-6,6)
Distance=[tex]\sqrt{(-6-3)^2+(6-2)^2}[/tex]
[tex]=\sqrt{(-9)^2+(4)^2}\\=\sqrt{97} \\\approx 9.85[/tex]
Cam
The hole is at (3,2)
Cam's golf ball is at point (8,-6)
Distance=[tex]\sqrt{(8-3)^2+(-6-2)^2}[/tex]
[tex]=\sqrt{(5)^2+(-8)^2}\\=\sqrt{89} \approx9.43[/tex]
Brooke
The hole is at (3,2)
Brooke's golf ball is at point (10,8)
[tex]Distance=\sqrt{(10-3)^2+(8-2)^2}\\=\sqrt{(7)^2+(6)^2}\\=\sqrt{85} \approx 9.22[/tex]
Since Eric's ball is the farthest from the hole, Eric should shoot next.
Otras preguntas
