Answer:
b. A = 71.6°; C = 45.40°; b =15.0
Step-by-step explanation:
The missing values can be found with the help of the Law of Cosine and properties of triangles:
Side b (Law of Cosine)
[tex]b = \sqrt{a^{2}+c^{2}-2\cdot a \cdot c \cdot \cos B}[/tex]
[tex]b = \sqrt{16^{2}+12^{2}-2\cdot (16)\cdot (12) \cdot \cos 63^{\circ}}[/tex]
[tex]b \approx 15.022[/tex]
Angle A (Law of Cosine)
[tex]\cos A = -\frac{a^{2} - b^{2}-c^{2}}{2\cdot b \cdot c}[/tex]
[tex]\cos A = - \frac{16^{2}-15.022^{2}-12^{2}}{2\cdot (15.022)\cdot (12)}[/tex]
[tex]\cos A = 0.315[/tex]
[tex]A= \cos^{-1} 0.315[/tex]
[tex]A \approx 71.639^{\circ}[/tex]
Angle C (Sum of internal angles in triangles)
[tex]C = 180^{\circ} - 63^{\circ} - 71.639^{\circ}[/tex]
[tex]C = 45.361^{\circ}[/tex]
Hence, the right answer is B.