Respuesta :

Step-by-step explanation:

lim(n→∞) |aₙ₊₁ / aₙ|

lim(n→∞) | (4ⁿ⁺¹ / (n+1)!) / (4ⁿ / n!) |

lim(n→∞) | (4ⁿ⁺¹ / (n+1)!) × (n! / 4ⁿ) |

lim(n→∞) | 4 / (n+1) |

0

Since the limit is less than 1, the series converges.

Space

Answer:

The sum  [tex]\displaystyle \sum^{\infty}_{n = 1} \frac{4^n}{n!}[/tex]  converges absolutely.

General Formulas and Concepts:
Calculus

Limits

  • Limit Rule [Variable Direct Substitution]:                                                    [tex]\displaystyle \lim_{x \to a} x = a[/tex]

Series Convergence Tests

  • Ratio Test:                                                                                                        [tex]\displaystyle \lim_{n \to \infty} \bigg| \frac{a_{n + 1}}{a_n} \bigg|[/tex]

Step-by-step explanation:

Step 1: Define

Identify.

[tex]\displaystyle \sum^{\infty}_{n = 1} \frac{4^n}{n!}[/tex]

Step 2: Find Convergence

  1. [Series] Define:                                                                                             [tex]\displaystyle a_n = \frac{4^n}{n!}[/tex]
  2. [Series] Set up [Ratio Test]:                                                                         [tex]\displaystyle \sum^{\infty}_{n = 1} \frac{4^n}{n!} \rightarrow \lim_{n \to \infty} \bigg| \frac{4^{n + 1}}{(n + 1)!} \cdot \frac{n!}{4^{n}} \bigg|[/tex]
  3. [Ratio Test] Simplify:                                                                                    [tex]\displaystyle \lim_{n \to \infty} \bigg| \frac{4^{n + 1}}{(n + 1)!} \cdot \frac{n!}{4^{n}} \bigg| = \lim_{n \to \infty} \bigg| \frac{4}{n + 1} \bigg|[/tex]
  4. [Ratio Test] Evaluate Limit [Limit Rule - Variable Direct Substitution]:     [tex]\displaystyle \displaystyle \lim_{n \to \infty} \bigg| \frac{4^{n + 1}}{(n + 1)!} \cdot \frac{n!}{4^{n}} \bigg| = 0[/tex]
  5. [Ratio Test] Check Conclusiveness:                                                           [tex]\displaystyle 0 < 1 \ \checkmark[/tex]

∴ since 0 is less than 1, the Ratio Test defines the sum  [tex]\displaystyle \sum^{\infty}_{n = 1} \frac{4^n}{n!}[/tex]absolutely convergent.

---

Learn more about the Ratio Test: https://brainly.com/question/16618162

Learn more about Taylor Series: https://brainly.com/question/23558817

Topic: AP Calculus BC (Calculus I + II)

Unit: Taylor Series

ACCESS MORE
EDU ACCESS
Universidad de Mexico