Answer:
64, 512, 4096 respectively.
Step-by-step explanation:
The given geometric series is
[tex]\sum\limits_{n=1}^5(8)^{n-1}[/tex]
It can be rewritten as
[tex]\sum\limits_{n=1}^5(8)^{n-1}=(8)^{1-1}+(8)^{2-1}+(8)^{3-1}+(8)^{4-1}+(8)^{5-1}[/tex]
[tex]\sum\limits_{n=1}^5(8)^{n-1}=(8)^{0}+(8)^{1}+(8)^{2}+(8)^{3}+(8)^{4}[/tex]
[tex]\sum\limits_{n=1}^5(8)^{n-1}=1+8+64+512+4096[/tex] ...(i)
It is given that the series is defined as
[tex]1 + 8 +\underline{\quad } +\underline{\quad }+\underline{\quad }[/tex] ...(ii)
From (i) and (ii), it is clear that the missing values are 64, 512, 4096 respectively.