An object weigh 40N in air ,weigh 20N when submerged in water,and 30N when submerged in a liquid of unknown liquid density.what is the density of unknown of liquid?

Respuesta :

Answer:

The density is  [tex]\rho_u =500 kg /m^3[/tex]

Explanation:

From the question we are told that

    The weight in air is  [tex]W_a = 40 \ N[/tex]

     The weight in water is  [tex]W_w = 20 \ N[/tex]

     The weight in a unknown liquid is  [tex]W_u = 30 \ N[/tex]

Now according to Archimedes principle the weight of the object in water is mathematically represented as

       [tex]W_w = W_a -m _w g[/tex]

Where  [tex]m_w[/tex] is he mass of the water displaced

 substituting value

       [tex]m_w g = 40 -20[/tex]

      [tex]m_w g = 20 \ N --- (1)[/tex]

Now according to Archimedes principle the weight of the object in unknown  is mathematically represented as

       [tex]W_u = W_a -m _u g[/tex]

Where  [tex]m_u[/tex] is he mass of the unknown liquid  displaced

 substituting value

       [tex]m_u g = 40 -30[/tex]

      [tex]m_u g = 10 \ N ---(2)[/tex]

dividing equation 2 by equation 1

      [tex]\frac{m_ug}{m_wg} = \frac{10}{20}[/tex]

     [tex]\frac{m_u}{m_w} = \frac{1}{2}[/tex]

=>  [tex]m_u = 0.5 m_w[/tex]

Now since the volume of water and liquid displaced are the same then

      [tex]\rho _u = 0.5 \rho_w[/tex]

This because

         [tex]density = \frac{mass}{volume}[/tex]

So if  volume is constant

         mass = constant * density

Where [tex]\rho_u[/tex] is the density of the liquid

     and  [tex]\rho_ w[/tex] is the density of water which is a constant with a value [tex]\rho_w = 1000 kg/m^3[/tex]

So

        [tex]\rho_u = 1000*0.5[/tex]

        [tex]\rho_u =500 kg /m^3[/tex]

RELAXING NOICE
Relax