Answer:
[tex]\frac{(82)(2.4)^2}{104.139} \leq \sigma^2 \leq \frac{(82)(2.4)^2}{62.132}[/tex]
[tex] 4.535 \leq \sigma^2 \leq 7.602[/tex]
Now we just take square root on both sides of the interval and we got:
[tex] 2.2 \leq \sigma \leq 2.8[/tex]
And the best option would be:
A. 2.2 < σ < 2.8
Step-by-step explanation:
Information provided
[tex]\bar X=32.1[/tex] represent the sample mean
[tex]\mu[/tex] population mean
s=2.4 represent the sample standard deviation
n=83 represent the sample size
Confidence interval
The confidence interval for the population variance is given by the following formula:
[tex]\frac{(n-1)s^2}{\chi^2_{\alpha/2}} \leq \sigma^2 \leq \frac{(n-1)s^2}{\chi^2_{1-\alpha/2}}[/tex]
The degrees of freedom are given by:
[tex]df=n-1=83-1=82[/tex]
The Confidence is given by 0.90 or 90%, the value of [tex]\alpha=0.1[/tex] and [tex]\alpha/2 =0.05[/tex], the critical values for this case are:
[tex]\chi^2_{\alpha/2}=62.132[/tex]
[tex]\chi^2_{1- \alpha/2}=104.139[/tex]
And replacing into the formula for the interval we got:
[tex]\frac{(82)(2.4)^2}{104.139} \leq \sigma^2 \leq \frac{(82)(2.4)^2}{62.132}[/tex]
[tex] 4.535 \leq \sigma^2 \leq 7.602[/tex]
Now we just take square root on both sides of the interval and we got:
[tex] 2.2 \leq \sigma \leq 2.8[/tex]
And the best option would be:
A. 2.2 < σ < 2.8