Respuesta :
Answer:
Assume that this wavelength is measured in vacuum. The energy on each photon of this wave would be approximately [tex]2.8 \times 10^{-14}\; \rm J[/tex].
Explanation:
The Planck-Einstein Relation relates the energy [tex]E[/tex] of a photon to its frequency [tex]f[/tex]:
[tex]E = h \, f[/tex],
where [tex]h[/tex] is Planck's Constant.
[tex]h \approx 6.67 \times 10^{-34}\; \rm m^2\cdot kg \cdot s^{-1}[/tex].
This question did not provide the frequency [tex]f[/tex] of this wave directly; the value of [tex]f[/tex] needs to be calculated from the wavelength [tex]\lambda[/tex] of this wave. Assume that this wave is travelling at the speed of light in vacuum:
[tex]c \approx 3.00\times 10^{8}\; \rm m \cdot s^{-1}[/tex].
The frequency of this electromagnetic wave would be:
[tex]\begin{aligned}f &= \frac{c}{\lambda}\approx \frac{3.00 \times 10^{8}\; \rm m \cdot s^{-1}}{7.0 \times 10^{-12}\; \rm m} \\ &\approx 4.29\times 10^{19}\; \rm s^{-1} = 4.29 \times 10^{19}\; \rm Hz\end{aligned}[/tex].
Apply the Planck-Einstein Relation to find the energy of a photon of this electromagnetic wave:
[tex]\begin{aligned}E &= h \, f \\ &\approx 6.63 \times 10^{-34}\; \rm m^2\cdot kg \cdot s^{-1} \times 4.29 \times 10^{19}\; \rm s^{-1} \\ &\approx 2.8 \times 10^{-14}\; \rm m^2\cdot kg \cdot s^{-1} = 2.8 \times 10^{-14}\; \rm J \end{aligned}[/tex].
Note that combining the two equations above ([tex]E = h \, f[/tex] and [tex]\displaystyle f = \frac{c}{\lambda}[/tex]) will give:
[tex]\displaystyle E = h\cdot \frac{c}{\lambda}[/tex].
This equation is supposed to give the same result (energy of a photon of this wave given its wavelength and speed) in one step:
[tex]\begin{aligned}E &= h\cdot \frac{c}{\lambda} \\ &\approx 6.63 \times 10^{-34} \; \rm m^2\cdot kg \cdot s^{-1}\times \frac{3.00\times 10^{8}\; \rm m \cdot s^{-1}}{7.0 \times 10^{-12}\; \rm m} \\ &\approx 2.8 \times 10^{-14}\; \rm m\end{aligned}[/tex].