Answer:
[tex]y=-2\,(x+3)^2-3[/tex]
Step-by-step explanation:
Notice that they are asking you to write the equation of the parabola in vertex form, that is using the coordinates of the vertex [tex](x_v,y_v)[/tex] in the expression:
[tex]y-y_v=a\,(x-x_v)^2\\y=a\,(x-x_v)^2+y_v[/tex]
we can start by directly replacing the given vertex coordinates (-3, -3) in the expression, and then using the extra info on the point the parabola goes through in order to find the parameter [tex]a[/tex]:
[tex]y=a\,(x-x_v)^2+y_v\\y=a\,(x+3)^2+(-3)\\y=a\,(x+3)^2-3\\-5=a\,(-2+3)^2-3\\-5=a\,(1)-3\\a=-5+3\\a=-2[/tex]
So, now we can write the full expression for the parabola:
[tex]y=a\,(x+3)^2-3\\y=-2\,(x+3)^2-3[/tex]