Answer:
Step-by-step explanation:
Given that;
Compressed Soil 2.85 2.66 3 2.82 2.76 2.81 2.78 3.08 2.94 2.86 3.08 2.82 2.78 2.98 3.00 2.78 2.96 2.90 3.18 3.16
Intermediate Soil 3.17 3.37 3.1 3.40 3.38 3.14 3.18 3.26 2.96 3.02 3.54 3.36 3.18 3.12 3.86 2.92 3.46 3.44 3.62 4.26
Compressed soil intermediate soil
Mean 2.907 3.286
SD 0.1414 0.2377
Here we have,
[tex]\bar x_1 =3.286\\ \bar x_2 =2.907\\s_1 =0.2377\\ s_2 =0.1414\\n_1=19\\n_2=20[/tex]
The pooled Standard deviation
[tex]s_p=\sqrt{\frac{(n_1-1)s_1^2(n_2-1)s_2^2}{n_1+n_2-2} } \\\\=0.1943[/tex]
So standard error for difference in population mean is
[tex]s_{\bar x_1 - \bar x_2} = \sqrt{\frac{s_p^2}{n_1}+\frac{s_p^2}{n_2} } \\\\=0.0623[/tex]
by inputting the values we get 0.0623
Degree of freedom for t is
df = 19 + 20 - 2 = 37,
so t-critical value is 2.715.
So required confidence interval for
[tex]\mu_{1} - \mu_{2}[/tex] will be
[tex]( \bar x_1 - \bar x_2) \pm t_{critical}*s_{\bar x_1 - \bar x_2}[/tex]
[tex]=0.3793 \pm2.715*0.063\\\\=0.3793\pm0.1690[/tex]
So required confidence interval is (0.2103 , 0.5483).