Respuesta :
Answer:
The sinusoidal function is [tex]y = 1 + 4 \cdot \sin \left[\frac{\pi}{2} \cdot \left(x-1\right)\right][/tex].
Step-by-step explanation:
The sinusoidal function has the following form:
[tex]y = x_{o} + A \cdot \sin (\omega \cdot x + \phi)[/tex]
Where:
[tex]A[/tex] - Amplitude, dimensionless.
[tex]\omega[/tex] - Angular frequency, measured in radians.
[tex]x_{o}[/tex] - Independent component of the midpoint value, dimensionless.
[tex]\phi[/tex] - Phase angle, measured in radians.
Amplitude is the absolute value of the difference between dependent component of the midline and absolute minimum:
[tex]A = |1-(-3)|[/tex]
[tex]A = 4[/tex]
Let suppose that sinusoidal function has its initial value at absolute minimum. Then:
[tex]x_{o} = 1[/tex]
Now, phase angle has to be determined:
[tex]-3 = 1 + 4\cdot \sin (\omega \cdot 0 + \phi)[/tex]
[tex]-4 = 4 \cdot \sin \phi[/tex]
[tex]\sin \phi = -1[/tex]
[tex]\phi = \sin^{-1}\,(-1)[/tex]
[tex]\phi = -\frac{\pi}{2}[/tex]
The angular frequency of the function is now determined by substituting all remaining variables and clearing it within sinusoidal function:
[tex]1 = 1 + 4\cdot \sin \left(\omega \cdot 1 - \frac{\pi}{2} \right)[/tex]
[tex]4\cdot \sin \left(\omega - \frac{\pi}{2} \right) = 0[/tex]
[tex]\sin \left(\omega - \frac{\pi}{2} \right) = 0[/tex]
[tex]\omega - \frac{\pi}{2} = \sin^{-1}\,0[/tex]
[tex]\omega = \frac{\pi}{2}[/tex]
Lastly, the sinusoidal function is:
[tex]y = 1 + 4\cdot \sin \left(\frac{\pi}{2} \cdot x - \frac{\pi}{2} \right)[/tex]
[tex]y = 1 + 4 \cdot \sin \left[\frac{\pi}{2} \cdot \left(x-1\right)\right][/tex]
