Answer:
w = 5.04 mm
Explanation:
To find the width of the central maximum you use the following formula for the height of the dark fringes:
[tex]y=(m+\frac{1}{2})\frac{\lambda D}{d}[/tex] ( 1 )
y: height of the m-th dark fringe
λ: wavelength of the electron
D: distance to the screen = 15.0m
d: distance between slits = 1.00*10^{-6} m
twice the height of the first dark fringe (m = 1) gives you the width of the central peak.
You first calculate the wavelength of the electron by using the Broglie's relation:
[tex]\lambda=\frac{h}{p_e}=\frac{6.62*10^{-34}Js}{5.91*10^{-24}kgm/s}\\\\\lambda=1.12*10^{-10}m[/tex]
where you have used the constant's Planck h.
Next, you replace the values of the parameters in the equation ( 1 ) with m=1:
[tex]y=(1+\frac{1}{2})\frac{(1.12*10^{-10}m)(15.0m)}{1.00*10^{-6}m}=2.52*10^{-3}m\\\\y=2.52\ mm[/tex]
the width of the central maximum is:
[tex]w=2y=5.04*10^{-3}m=5.04\ mm[/tex]