The rate at which a metal alloy oxidizes in an oxygen-containing atmosphere is a typical example of the practical utility of the Arrhenius equation. For example, the rate of oxidation of a magnesium alloy is represented by a rate constant, k. The value of k at 300°C is 1.05 * 10-8kg/(m4 # s). At 400°C, the value of k rises to 2.95 * 10-4kg/(m4 # s). Calculate the activation energy, Q, for this oxidation process (in units of kJ/mol).

Respuesta :

Answer:

The activation energy is  [tex]Q = 328.31 \ K J/mol[/tex]

Explanation:

From the question we are told that

      The rate constant is  k

       at the temperature [tex]T_1 = 300 = 300 + 273 = 573 \ K[/tex]

      The value of k is  [tex]k_1 = 1.05 *10^{-8} \ kg /m^4 \cdot s[/tex]

      at temperature [tex]T_2 = 400 ^oC = 400 + 273 = 673 \ K[/tex]

       The value of  k is  [tex]k_2 = 2.95 *10^{-4} \ kg /m^4 \cdot s[/tex]

The rate constant is mathematically represented as

       [tex]k = Ce^{- \frac{Q}{RT} }[/tex]

Where Q is the activation energy

         R is the ideal gas constant with a value of  [tex]R = 8.314 \ J /mol \cdot K[/tex]

          C is a constant

           T is the temperature

For the first  rate constant

       [tex]k_1 = Ce ^{-\frac{Q}{RT_1} }[/tex]

For the second   rate constant

       [tex]k_2 = Ce ^{-\frac{Q}{RT_2} }[/tex]

Now the ratio between the two given rate constant is  

      [tex]\frac{k_1 }{k_2} = e^{(\frac{Q}{R} [\frac{1}{\frac{T_2 - 1}{T_1} } ] )}[/tex]

  =>    [tex]ln [\frac{k_1}{k_2} ] = \frac{Q}{R} * [\frac{1}{\frac{T_2 -1}{T_1} } ][/tex]

substituting values  

       [tex]ln [\frac{1.05 *10^{-8}}{2.95 *10^{-4}} ] = \frac{Q}{8.314} * [\frac{1}{\frac{673 -1}{573} } ][/tex]

=>     [tex]Q = 328.31 \ K J/mol[/tex]

ACCESS MORE
EDU ACCESS