Answer:
The activation energy is [tex]Q = 328.31 \ K J/mol[/tex]
Explanation:
From the question we are told that
The rate constant is k
at the temperature [tex]T_1 = 300 = 300 + 273 = 573 \ K[/tex]
The value of k is [tex]k_1 = 1.05 *10^{-8} \ kg /m^4 \cdot s[/tex]
at temperature [tex]T_2 = 400 ^oC = 400 + 273 = 673 \ K[/tex]
The value of k is [tex]k_2 = 2.95 *10^{-4} \ kg /m^4 \cdot s[/tex]
The rate constant is mathematically represented as
[tex]k = Ce^{- \frac{Q}{RT} }[/tex]
Where Q is the activation energy
R is the ideal gas constant with a value of [tex]R = 8.314 \ J /mol \cdot K[/tex]
C is a constant
T is the temperature
For the first rate constant
[tex]k_1 = Ce ^{-\frac{Q}{RT_1} }[/tex]
For the second rate constant
[tex]k_2 = Ce ^{-\frac{Q}{RT_2} }[/tex]
Now the ratio between the two given rate constant is
[tex]\frac{k_1 }{k_2} = e^{(\frac{Q}{R} [\frac{1}{\frac{T_2 - 1}{T_1} } ] )}[/tex]
=> [tex]ln [\frac{k_1}{k_2} ] = \frac{Q}{R} * [\frac{1}{\frac{T_2 -1}{T_1} } ][/tex]
substituting values
[tex]ln [\frac{1.05 *10^{-8}}{2.95 *10^{-4}} ] = \frac{Q}{8.314} * [\frac{1}{\frac{673 -1}{573} } ][/tex]
=> [tex]Q = 328.31 \ K J/mol[/tex]