[tex]z=f(x(u,v),y(u,v)),\begin{cases}x(u,v)=2u+v^2\\y(u,v)=3u-v\end{cases}[/tex]
We're given that [tex]f_x(6,1)=3[/tex] and [tex]f_y(6,1)=-1[/tex], and want to find [tex]\frac{\partial z}{\partial v}(1,2)[/tex].
By the chain rule, we have
[tex]\dfrac{\partial z}{\partial v}=\dfrac{\partial z}{\partial x}\dfrac{\partial x}{\partial v}+\dfrac{\partial z}{\partial y}\dfrac{\partial y}{\partial v}[/tex]
and
[tex]\dfrac{\partial x}{\partial v}=2v[/tex]
[tex]\dfrac{\partial y}{\partial v}=-1[/tex]
Then
[tex]\dfrac{\partial z}{\partial v}(1,2)=\dfrac{\partial z}{\partial x}(6,1)\dfrac{\partial x}{\partial v}(1,2)+\dfrac{\partial z}{\partial y}(6,1)\dfrac{\partial y}{\partial v}(1,2)[/tex]
(because the point [tex](x,y)=(6,1)[/tex] corresponds to [tex](u,v)=(1,2)[/tex])
[tex]\implies\dfrac{\partial z}{\partial v}(1,2)=3\cdot2\cdot2+(-1)\cdot(-1)=\boxed{13}[/tex]