1. Find C if A=25.2°, a=6.92 yd, and b=4.82 yd

2. Find c if C=118°, a=75.0 km, and b=131 km

3. Find B if a=17.3ft, b=22.6ft, c=29.8ft

4. Find the area of triangle ABC if a=14, b=30, and c=40

5. Find the area of triangle XYZ (shown with pic) (number inside triangle is 30°)​

Respuesta :

Answer:

1) [tex]C = 137.522^{\circ}[/tex], 2) [tex]c \approx 178.917\,km[/tex], 3) [tex]B \approx 49.004^{\circ}[/tex], 4) [tex]A \approx 168[/tex], 5) Unsolvable due to lack of information.

Step-by-step explanation:

1) The angle B is determined by the Law of Sines:

[tex]\frac{6.92\,yd}{\sin 25.2^{\circ}} = \frac{4.82\,yd}{\sin B}[/tex]

[tex]\sin B = \left(\frac{4.82\,yd}{6.92\,yd} \right)\cdot \sin 25.2^{\circ}[/tex]

[tex]\sin B = 0.297[/tex]

[tex]B \approx 17.278^{\circ}[/tex]

The angle C is:

[tex]C = 180^{\circ} - 25.2^{\circ} - 17.278^{\circ}[/tex]

[tex]C = 137.522^{\circ}[/tex]

2) The side c is computed by the Law of Cosine:

[tex]c = \sqrt{(75\,km)^{2}+(131\,km)^{2}-2\cdot (75\,km)\cdot (131\,km)\cdot \cos 118^{\circ}}[/tex]

[tex]c \approx 178.917\,km[/tex]

3) The angle B is determined with the help of the Law of Cosine:

[tex](22.6\,ft)^{2} = (17.3\,ft)^{2} + (29.8\,ft)^{2} - 2\cdot (17.3\,ft)\cdot (29.8\,ft)\cdot \cos B[/tex]

[tex]510.76 = 1187.33 - 1031.08\cdot \cos B[/tex]

[tex]1031.08\cdot \cos B = 676.57[/tex]

[tex]\cos B = 0.656[/tex]

[tex]B \approx 49.004^{\circ}[/tex]

4) The formula for the surface of a triangle by just knowing their sides is:

[tex]A = \sqrt{s\cdot (s-a)\cdot (s-b)\cdot (s-c)}[/tex], where [tex]s = \frac{a+b+c}{2}[/tex].

[tex]s = \frac{14+30+40}{2}[/tex]

[tex]s = 42[/tex]

[tex]A = \sqrt{(42)\cdot (42-14)\cdot (42-30)\cdot (42-40)}[/tex]

[tex]A \approx 168[/tex]

5) The statement is not complete and there is no possibility to find the figure).

ACCESS MORE