Answer:
[tex]\frac{(a-1)(a+7)(a-1)}{4a^{2}(a+1) }[/tex]
Step-by-step explanation:
The given expression is
[tex]\frac{(a^{2} +6a-7)}{\frac{(2a^{3} +4a^{2} +2a)(2a)}{(a^{2} -1)} }[/tex]
First, we solve the division
[tex]\frac{(a^{2} -1)(a^{2} +6a-7)}{(2a^{3} +4a^{2} +2a)(2a)}[/tex]
Second, we factor the numerator
[tex](a^{2} -1)(a^{2} +6a-7)=(a+1)(a-1)(a+7)(a-1)[/tex]
The first expression is the difference between two perfect squares, and the second expression is about finding to number which product is 7 and which difference is 6.
Third, we factor the denominator
[tex](2a^{3} +4a^{2} +2a)(2a)[/tex]
We extract the common factor from the trinomial
[tex]2a(a^{2}+2a+1 )(2a)=4a^{2}(a^{2}+2a+1 )[/tex]
Now, we find two number which product is 1 and which sum is 2
[tex]4a^{2}(a^{2}+2a+1 )=4a^{2}(a+1)(a+1)[/tex]
Then, we replace all factor in the initial fraction
[tex]\frac{(a+1)(a-1)(a+7)(a-1)}{4a^{2}(a+1)(a+1) }[/tex]
Equal factors are simplified, given as result
[tex]\frac{(a-1)(a+7)(a-1)}{4a^{2}(a+1) }[/tex]
[tex]\frac{(a-1)(a+7)(a-1)}{4a^{2}(a+1) }[/tex]