Respuesta :

Answer:

[tex]\frac{(a-1)(a+7)(a-1)}{4a^{2}(a+1) }[/tex]

Step-by-step explanation:

The given expression is

[tex]\frac{(a^{2} +6a-7)}{\frac{(2a^{3} +4a^{2} +2a)(2a)}{(a^{2} -1)} }[/tex]

First, we solve the division

[tex]\frac{(a^{2} -1)(a^{2} +6a-7)}{(2a^{3} +4a^{2} +2a)(2a)}[/tex]

Second, we factor the numerator

[tex](a^{2} -1)(a^{2} +6a-7)=(a+1)(a-1)(a+7)(a-1)[/tex]

The first expression is the difference between two perfect squares, and the second expression is about finding to number which product is 7 and which difference is 6.

Third, we factor the denominator

[tex](2a^{3} +4a^{2} +2a)(2a)[/tex]

We extract the common factor from the trinomial

[tex]2a(a^{2}+2a+1 )(2a)=4a^{2}(a^{2}+2a+1 )[/tex]

Now, we find two number which product is 1 and which sum is 2

[tex]4a^{2}(a^{2}+2a+1 )=4a^{2}(a+1)(a+1)[/tex]

Then, we replace all factor in the initial fraction

[tex]\frac{(a+1)(a-1)(a+7)(a-1)}{4a^{2}(a+1)(a+1) }[/tex]

Equal factors are simplified, given as result

[tex]\frac{(a-1)(a+7)(a-1)}{4a^{2}(a+1) }[/tex]

Therefore, the answer in factored form is

[tex]\frac{(a-1)(a+7)(a-1)}{4a^{2}(a+1) }[/tex]

ACCESS MORE