Answer:
1. a^3/6 (15)^{1/2}
2.
a. a = 12 cm
b. V = 384 cm^3
Step-by-step explanation:
1. The volume of rectangular pyramid is given by:
[tex]V=\frac{1}{3}bh[/tex]
b: base area = a^2
h: height
c: side edge = 2a
"h" can be calculated by using the Pitagora's theorem:
[tex]h=\sqrt{(2a)^2-(\frac{a}{2})^2}=\sqrt{4a^2-\frac{a^2}{4}}\\\\h=\sqrt{15}\frac{a}{2}[/tex]
The, the volume is:
[tex]V=\frac{1}{3}(a^2)(\sqrt{15}\frac{a}{2})=\frac{a^3}{6}\sqrt{15}[/tex]
2.
a. The side base is calculated by using the Pitagora's theorem again:
[tex]\frac{a}{2}=\sqrt{(10cm)^2-(8cm)^2}=6cm\\\\a=12cm[/tex]
b. The volume is given by:
[tex]V=\frac{1}{3}(12cm)^2(8cm)=384\ cm^3[/tex]