Answer:
Step-by-step explanation:
PART 1:
Possible roots by noticing the coefficient of first term:
x = 1, -1
PART 2:
1 | 1 -1 -4 4
1 0 -4
1 0 -4 0
The remainder is zero, hence one factor is (x-1)
PART 3:
[tex]x^3-x^2-4x+4=(x^2-4)(x-1)\\\\x^3-x^2-4x+4=(x+2)(x-2)(x-1)[/tex]
PART 4:
[tex]f(x)=(x+2)(x-2)(x-1)\\\\=(x^2-4)(x-1)\\\\=x^3-4x-x^2+4\\\\=x^3-x^2-4x+4[/tex]