Answer:
16 seconds
Explanation:
Given:
C = 60
L = 4 seconds each = 4*4 =16
In this problem, the first 3 timing stages are given as:
200, 187, and 210 veh/h.
We are to find the estimated effective green time of the fourth timing stage. The formula for the estimated effective green time is:
[tex] g = (\frac{v}{s}) (\frac{C}{X}) [/tex]
Let's first find the fourth stage critical lane group ratio [tex] \frac{v}{s}[/tex] , using the formula:
[tex] C = \frac{1.5L +5}{1 - ( \frac{200}{1800} + \frac{187}{1800} + \frac{210}{1800}) + ( \frac{v}{s})} [/tex]
[tex] 60 = \frac{1.5*16 + 5}{1 - ( \frac{200}{1800} + \frac{187}{1800} + \frac{210}{1800}) + ( \frac{v}{s})} [/tex]
[tex] 60 = \frac{24+5}{1 - (0.332 + ( \frac{v}{s}))} [/tex]
Solving for [tex] (\frac{v}{s}) [/tex], we have:
[tex] (\frac{v}{s}) = 0.185 [/tex]
Let's also calculate the volume capacity ratio X,
[tex]X = (\frac{200}{1800} + \frac{187}{1800} + \frac{210}{1800} + 0.185)(\frac{60}{60-16} [/tex]
X = 0.704
For the the estimated effective green time of the fourth timing stage, we have:
[tex] g_4 = (\frac{v}{s}) (\frac{C}{X}) [/tex]
Substituting figures in the equation, we now have:
[tex] g_4 = (0.185) (\frac{60}{0.704}) [/tex]
[tex] g_4 = 15.78 seconds [/tex]
15.78 ≈ 16 seconds
The estimated effective green time of the fourth timing stage is 16 seconds