Which expressions can never result in a negative real number when evaluated for any value of x? Select all that apply.
1) x^1/2

2)x^2/3

3)x^-3/5

4)x^-1/2

5)x^1/3​

Respuesta :

It is 5 beacause the x^1/3

The expressions that can never result in a negative real number when evaluated for any value of x are x^1/2, x^2/3 and x^1/3

1) x^1/2

find the square root

[tex]= √x^1/2

[/tex]

[tex]= x^1[/tex]

= x

2) x^2/3

[tex]= 3√x^2/3[/tex]

=

3) x^-3/5

[tex]= 5√x^-3/5[/tex]

[tex]= x^-3[/tex]

[tex]= 1/x^3[/tex]

4) x^-1/2

[tex]= √x^-1/2[/tex]

,

[tex]= x ^-1[/tex]

[tex]= 1/x[/tex]

5) x^1/3

[tex]= 3√x^1/3[/tex]

[tex]= x^1[/tex]

= x

Therefore, the expressions that can never result in a negative real number when evaluated for any value of x are x^1/2, x^2/3 and x^1/3

Read more:

https://brainly.com/question/19045022

ACCESS MORE