Respuesta :
Answer:
[tex]a \approx -2.826[/tex], [tex]b \approx 7.072[/tex]
Step-by-step explanation:
First, the vector must be transformed into its polar form:
[tex]r = \sqrt{3^{2}+ (-7)^{2}}[/tex]
[tex]r \approx 7.616[/tex]
[tex]\theta \approx 2\pi - \tan^{-1}\left(\frac{7}{3} \right)[/tex]
[tex]\theta \approx 1.629\pi[/tex]
Let assume that vector is rotated counterclockwise. The new angle is:
[tex]\theta' = \theta + \frac{3\pi}{4}[/tex]
[tex]\theta' = 2.379\pi[/tex]
Which is coterminal with [tex]\theta'' = 0.379\pi[/tex]. The reflection across y-axis is:
[tex]\theta''' = \pi - \theta''[/tex]
[tex]\theta''' = 0.621\pi[/tex]
The equivalent vector in rectangular coordinates is:
[tex]a = 7.616\cdot \cos 0.621\pi[/tex]
[tex]a \approx -2.826[/tex]
[tex]b = 7.616\cdot \sin 0.621\pi[/tex]
[tex]b \approx 7.072[/tex]
Answer: a = -2.83 and b = 7.07.
Step-by-step explanation: I got this correct on Edmentum.
Also, to get the answer you first multiply [tex]\left[\begin{array}{ccc}cos(\frac{3\pi }{4}) &(-sin\frac{3\pi }{4}) \\sin(\frac{3\pi }{4}) &cos(\frac{3\pi }{4}) \end{array}\right] by \left[\begin{array}{ccc}3\\-7\end{array}\right][/tex]
The you multiply the answer which is [tex]\left[\begin{array}{ccc}2\sqrt{2} \\5\sqrt{2} \end{array}\right][/tex] [tex]by\ \left[\begin{array}{ccc}-1&0\\0&1\end{array}\right][/tex] then you get the answer [tex]\left[\begin{array}{ccc}-2\sqrt{2} \\5\sqrt{2} \end{array}\right][/tex] or -2.83 and 7.07. You can use a calculator like the one on ma th wa y to make multiplication easier, but when you do multiply always put the 2x2 equation before the 2x1 to get another vector matrix.
![Ver imagen elpink25](https://us-static.z-dn.net/files/dac/375af8d16ce28cfb56ea329f9d0682db.png)