Respuesta :

Answer:

The final answers are:

[tex]x = 4[/tex]

[tex]x = -\frac{1}{2}[/tex]

Step-by-step explanation:

-The equation:

[tex]2x^2 -7x-4=0[/tex]

Use the Quadratic Formula:

[tex]\frac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]

[tex]x =\frac{-(-7)\pm \sqrt{(-7)^2-4\time2(-4)} }{2\times2}[/tex]

-Then, you solve:

[tex]x = \frac{-(-7)\pm \sqrt{(-7)^2-4\time2(-4)} }{2\times2}[/tex]

-Multiply -7 by the exponent 2:

[tex]x =\frac{-(-7)\pm \sqrt{49-4\time2(-4)} }{2\times2}[/tex]

-Multiply to the 4 and the 2:

[tex]x =\frac{-(-7)\pm \sqrt{49-8(-4)} }{2\times2}[/tex]

-Distribute -4 by 8:

[tex]x=\frac{-(-7)\pm \sqrt{49+32} }{2\times2}[/tex]

-Add 49 and 32 together:

[tex]x =\frac{-(-7)\pm \sqrt{81} }{2\times2}[/tex]

-Take the square root of 81:

[tex]x= \frac{-(-7)\pm 9 }{2\times2}[/tex]

-The opposite of -7 is 7:

[tex]x = \frac{7\pm 9 }{2\times2}[/tex]

-Multiply 2 times 2:

[tex]x = \frac{7\pm 9 }{4}[/tex]

-Add both the 7 and 9:

[tex]x = \frac{16}{4}[/tex]

-Divide 16 by 4 to get 4:

[tex]x = 4[/tex]

So, the first answer [tex]x = 4[/tex] and you need to find the second answer.

-To find the second answer, you to reduce the fraction to lowest terms and canceling out the 2:

[tex]x = \frac{-2}{4}[/tex]

[tex]x = -\frac{1}{2}[/tex]

So, the second answer is [tex]x = -\frac{1}{2}[/tex].

-The results are:

[tex]x =4[/tex]

[tex]x = -\frac{1}{2}[/tex]

ACCESS MORE