Answer:
[tex]\dot{W_{H} } = 4244.48 Btu/h[/tex]
Explanation:
Temperature of the house, [tex]T_{H} = 70^{0} F[/tex]
Convert to rankine, [tex]T_{H} = 70^{0}+ 460 = 530 R[/tex]
Heat is extracted at 40°F i.e [tex]T_{L} = 40^{0}F = 40 + 460 = 500 R[/tex]
Calculate the coefficient of performance of the heat pump, COP
[tex]COP = \frac{T_{H} }{T_{H} - T_{L} } \\COP = \frac{530 }{530 - 500 }\\ COP = \frac{530}{30} \\COP = 17.67[/tex]
The minimum power required to run the heat pump is given by the formula:
[tex]\dot{W_{H} } = \frac{\dot{Q_{H} }}{COP} \\[/tex]...............(*)
Where the heat losses from the house, [tex]\dot{Q_{H} } = 75,000 Btu/h[/tex]
Substituting these values into * above
[tex]\dot{W_{H} } = \frac{75000}{17.67} \\ \dot{W_{H} } = 4244.48 Btu/h[/tex]