Respuesta :
Answer:377.46 N
Step-by-step explanation:
Given
Vector 1 has a magnitude of [tex]360\ N[/tex] and makes an angle of [tex]30^{\circ}[/tex]
vector 2 has a magnitude of [tex]240\ N[/tex] and makes an angle of [tex]135^{\circ}[/tex]
Net Horizontal force
[tex]\sum F_h=360\cos 30+240\cos 135[/tex]
[tex]\sum F_h=311.769-169.70[/tex]
[tex]\sum F_h=142.069\ N\quad \ldots(i)[/tex]
Net vertical force
[tex]\sum F_v=360\sin 30+240\sin 135[/tex]
[tex]\sum F_v=180+169.705[/tex]
[tex]\sum F_v=349.705\ N\quad \ldots(ii)[/tex]
Net resultant force
[tex]F_{net}=\sqrt{F_h^2+F_v^2}[/tex]
[tex]F_{net}=\sqrt{(142.069)^2+(349.705)^2}[/tex]
[tex]F_{net}=377.46\ N[/tex]
angle which resultant make with x-axis
[tex]\tan \theta =\frac{\sum F_v}{\sum F_h}[/tex]
[tex]\tan \theta =\frac{349.705}{142.069}[/tex]
[tex]\tan \theta =2.461[/tex]
[tex]\theta =67.88^{\circ}[/tex]
Thus vector v is given by
[tex]\vec{v}=377.46[\cos 67.88+\sin 67.88][/tex]
Answer:
B) [tex]v=(180\sqrt{3} -120\sqrt{2})i+(18 0+120\sqrt{2} )j[/tex]
Step-by-step explanation:
I just did the test and this is the correct answer.