The de Broglie wavelength of an electron in a hydrogen atom is 1.66 nm.Identify the integer n that corresponds to its orbit.

Respuesta :

Answer:

[tex]n=5[/tex]

Explanation:

The De Broglie equation is given by:

[tex]\lambda=\frac{h}{mv}[/tex]

Where:

  • h is the Plank constant [tex]h=6.626*10^{-34}J[/tex]
  • m is the electron mass [tex]m_{e}=9.1*10^{-31}kg[/tex]
  • v is the speed of the electron

Then:

[tex]v=\frac{h}{m\lambda}[/tex] (1)

The  energy equation of a hydrogen electron in a orbit n is:

[tex]E=-\frac{R_{H}}{n^{2}}[/tex] (2)

  • R(H) is the Rydberg constant [tex]R_{H}=2.18*10^{-18}J[/tex]
  • n is an integer that corresponds to electron orbit.

We can write E as a kinetic energy an use v of the equation (1)

[tex]\frac{1}{2}mv^{2}=\frac{R_{H}}{n^{2}}[/tex]

[tex]n^{2}=\frac{2R_{H}}{mv^{2}}[/tex]        

[tex]n=\frac{m\lambda}{h}\sqrt{\frac{2R_{H}}{m}}[/tex]      

[tex]n=\frac{9.1*10^{-31}*1.66*10^{-9}}{6.626*10^{-34}}\sqrt{\frac{2*2.18*10^{-18}}{9.1*10^{-31}}}[/tex]  

[tex]n=5[/tex]

I hope it helps you!

 

ACCESS MORE