Answer:
The area of the rectangle in polynomial form is [tex]k^4 +10 k^2 + 21[/tex]
Step-by-step explanation:
Given
Shape: Rectangle
[tex]Height: k^2 + 3[/tex]
[tex]Width: k^2 + 7[/tex]
Required
Area of the rectangle
The area of a rectangle is calculated as thus;
[tex]Area = Length * Width[/tex]
By substituting [tex]k^2 + 3[/tex] for height and [tex]k^2 + 7[/tex] for width; This gives
[tex]Area = (k^2 + 3)(k^2 + 7)[/tex]
Expand the bracket
[tex]Area = k^2(k^2 + 7) + 3(k^2 + 7)[/tex]
Open each bracket
[tex]Area = k^2*k^2 + k^2*7 + 3*k^2 + 3*7[/tex]
[tex]Area = k^4 +7 k^2 + 3k^2 + 21[/tex]
[tex]Area = k^4 +10 k^2 + 21[/tex]
Hence, the area of the rectangle in polynomial form is [tex]k^4 +10 k^2 + 21[/tex]