A rectangle has a height of k2 + 3 and a width of k2 + 7.

Express the area of the entire rectangle.

Your answer should be a polynomial in standard form.

k2

2

+

Respuesta :

Answer:

The area of the rectangle in polynomial form is [tex]k^4 +10 k^2 + 21[/tex]

Step-by-step explanation:

Given

Shape: Rectangle

[tex]Height: k^2 + 3[/tex]

[tex]Width: k^2 + 7[/tex]

Required

Area of the rectangle

The area of a rectangle is calculated as thus;

[tex]Area = Length * Width[/tex]

By substituting [tex]k^2 + 3[/tex] for height and [tex]k^2 + 7[/tex] for width; This gives

[tex]Area = (k^2 + 3)(k^2 + 7)[/tex]

Expand the bracket

[tex]Area = k^2(k^2 + 7) + 3(k^2 + 7)[/tex]

Open each bracket

[tex]Area = k^2*k^2 + k^2*7 + 3*k^2 + 3*7[/tex]

[tex]Area = k^4 +7 k^2 + 3k^2 + 21[/tex]

[tex]Area = k^4 +10 k^2 + 21[/tex]

Hence, the area of the rectangle in polynomial form is [tex]k^4 +10 k^2 + 21[/tex]

ACCESS MORE