WILL MARK BRAINLIEST! PLEASE SHOW WORK!
The volumes of two similar solids are 729m3 and 512 m3. The surface area of the solid is 324m2 What is the surface area of the smaller solid?

Respuesta :

Step-by-step explanation:

Step 1:  Make an equation

[tex]\frac{volume_1}{surface-area_1} = \frac{volume_2}{surface-area_2}[/tex]

[tex]\frac{729}{324} = \frac{512}{x}[/tex]

Step 2:  Cross multiply

[tex]\frac{729}{324} = \frac{512}{x}[/tex]

[tex]729(x) = 324(512)[/tex]

[tex]729x = 165888[/tex]

Step 3:  Divide both sides by 729

[tex]729x / 729 = 165888 / 729[/tex]

[tex]x = \frac{165888} {729}[/tex]

[tex]x = 227.555...[/tex]

Answer: [tex]x = \frac{165888} {729}[/tex] or in decimal form -  [tex]x = 227.555...[/tex]

Answer:

256 m²

Step-by-step explanation:

(Ratio of sides)³ = Ratio of volumes

729/512 = (Ratio of sides)³

Ratio of sides = 9/8

(Ratio of sides)² = ratio of area

(9/8)² = (324/x)

x = 256

ACCESS MORE