Answer:
The area of the triangle is [tex]5x^4 + 4x^3[/tex] square units
Step-by-step explanation:
Given
Shape: Triangle
[tex]Height = 2x^2[/tex]
[tex]Base = 5x^2+4x[/tex]
Required
The area of the triangle
The area of a triangle is calculated as thus;
[tex]Area = \frac{1}{2}(base)(height)[/tex]
By substituting [tex]Height = 2x^2[/tex] and [tex]Base = 5x^2+4x[/tex]; This gives
[tex]Area = \frac{1}{2}(5x^2 + 4x)(2x^2)[/tex]
[tex]Area = \frac{(5x^2 + 4x)(2x^2)}{2}[/tex]
[tex]Area = (5x^2 + 4x)(x^2)[/tex]
Open Bracket
[tex]Area = 5x^2 * x^2 + 4x * x^2[/tex]
[tex]Area = 5x^4 + 4x^3[/tex]
Hence, the area of the triangle is [tex]5x^4 + 4x^3[/tex] square units