The force required to stretch a spring varies directly with the amount the spring is stretched. A spring stretches by 33 m when a 19 N weight is hung from it and the weight is at rest (at equilibrium). The 19 N weight is replaced by an unknown weight W so that the spring is stetched to a new equilibrium position, 17 m below the position if no weight were attached. The weight W is then displaced from equilibrium and released so that it oscillates.

Respuesta :

Answer:

The period is  [tex]T = 8.27 \ sec[/tex]

Explanation:

From the question we are told that

   The extension of the spring is  [tex]e_1 = 33 \ m[/tex]

   The  first weight  applied is  [tex]F_1 = 19 N[/tex]

     The second weight applied is  [tex]F_2 = W[/tex]

     The second extension is [tex]e_2 = 17 \ m[/tex]

The spring constant of the spring is mathematically evaluated as

         [tex]k = \frac{F_1}{e_1 }[/tex]

substituting values

       [tex]k = \frac{19}{33 }[/tex]

       [tex]k = 0.576[/tex]

We are told that

         19 N extended the spring to 33 m    

Then W N  will extended it by  17 m

Therefore     [tex]W = \frac{19 * 17}{33}[/tex]

                    [tex]W = 9.788 \ N[/tex]

Generally the period of the oscillation is mathematically represented as

           [tex]T = 2 \pi \sqrt{\frac{M}{K} }[/tex]

where M is the mass of the W which is mathematically evaluated as

         [tex]M = \frac{9.788}{9.8}[/tex]

          [tex]M = 1.0 \ kg[/tex]

substituting values

        [tex]T = 2 \pi \sqrt{\frac{1}{0.576} }[/tex]

       [tex]T = 8.27 \ sec[/tex]

ACCESS MORE