Answer:
The period is [tex]T = 8.27 \ sec[/tex]
Explanation:
From the question we are told that
The extension of the spring is [tex]e_1 = 33 \ m[/tex]
The first weight applied is [tex]F_1 = 19 N[/tex]
The second weight applied is [tex]F_2 = W[/tex]
The second extension is [tex]e_2 = 17 \ m[/tex]
The spring constant of the spring is mathematically evaluated as
[tex]k = \frac{F_1}{e_1 }[/tex]
substituting values
[tex]k = \frac{19}{33 }[/tex]
[tex]k = 0.576[/tex]
We are told that
19 N extended the spring to 33 m
Then W N will extended it by 17 m
Therefore [tex]W = \frac{19 * 17}{33}[/tex]
[tex]W = 9.788 \ N[/tex]
Generally the period of the oscillation is mathematically represented as
[tex]T = 2 \pi \sqrt{\frac{M}{K} }[/tex]
where M is the mass of the W which is mathematically evaluated as
[tex]M = \frac{9.788}{9.8}[/tex]
[tex]M = 1.0 \ kg[/tex]
substituting values
[tex]T = 2 \pi \sqrt{\frac{1}{0.576} }[/tex]
[tex]T = 8.27 \ sec[/tex]