A photo is printed on a 20-inch by 24-inch piece of paper. The photo covers 320 square inches and has a ubiform border. What is the width of
the border?

Respuesta :

Answer:2 in.

Step-by-step explanation:

Given

Dimension of photo frame is [tex]20\ in.\times 24\ in.[/tex]

If the photo cover an area of [tex]320\ in.^2[/tex]

Suppose x be the width of border

Therefore dimension of frame without border is

[tex]A'=(20-2x)(24-2x)[/tex]

And [tex]A'[/tex] must be equal to [tex]320\ in.^2[/tex]

So,

[tex]\Rightarrow (20-2x)(24-2x)=320[/tex]

[tex]\Rightarrow (10-x)(12-x)=80[/tex]

[tex]\Rightarrow 120-10x-12x+x^2=80[/tex]

[tex]\Rightarrow x^2-22x+40=0[/tex]

[tex]\Rightarrow x^2-20x-2x+40=0[/tex]

[tex]\Rightarrow (x-2)(x-20)=0[/tex]

Thus there are two values of x out of which [tex]x=20\ in.[/tex] is not valid because it is not feasible

thus width of border is [tex]x=2\ in.[/tex]

ACCESS MORE