Answer:2 in.
Step-by-step explanation:
Given
Dimension of photo frame is [tex]20\ in.\times 24\ in.[/tex]
If the photo cover an area of [tex]320\ in.^2[/tex]
Suppose x be the width of border
Therefore dimension of frame without border is
[tex]A'=(20-2x)(24-2x)[/tex]
And [tex]A'[/tex] must be equal to [tex]320\ in.^2[/tex]
So,
[tex]\Rightarrow (20-2x)(24-2x)=320[/tex]
[tex]\Rightarrow (10-x)(12-x)=80[/tex]
[tex]\Rightarrow 120-10x-12x+x^2=80[/tex]
[tex]\Rightarrow x^2-22x+40=0[/tex]
[tex]\Rightarrow x^2-20x-2x+40=0[/tex]
[tex]\Rightarrow (x-2)(x-20)=0[/tex]
Thus there are two values of x out of which [tex]x=20\ in.[/tex] is not valid because it is not feasible
thus width of border is [tex]x=2\ in.[/tex]