Respuesta :
Answer:
The volume of the sphere is 14m³
Step-by-step explanation:
Given
Volume of the cylinder = [tex]21m^3[/tex]
Required
Volume of the sphere
Given that the volume of the cylinder is 21, the first step is to solve for the radius of the cylinder;
Using the volume formula of a cylinder
The formula goes thus
[tex]V = \pi r^2h[/tex]
Substitute 21 for V; this gives
[tex]21 = \pi r^2h[/tex]
Divide both sides by h
[tex]\frac{21}{h} = \frac{\pi r^2h}{h}[/tex]
[tex]\frac{21}{h} = \pi r^2[/tex]
The next step is to solve for the volume of the sphere using the following formula;
[tex]V = \frac{4}{3}\pi r^3[/tex]
Divide both sides by r
[tex]\frac{V}{r} = \frac{4}{3r}\pi r^3[/tex]
Expand Expression
[tex]\frac{V}{r} = \frac{4}{3}\pi r^2[/tex]
Substitute [tex]\frac{21}{h} = \pi r^2[/tex]
[tex]\frac{V}{r} = \frac{4}{3} * \frac{21}{h}[/tex]
[tex]\frac{V}{r} = \frac{84}{3h}[/tex]
[tex]\frac{V}{r} = \frac{28}{h}[/tex]
Multiply both sided by r
[tex]r * \frac{V}{r} = \frac{28}{h} * r[/tex]
[tex]V = \frac{28r}{h}[/tex] ------ equation 1
From the question, we were given that the height of the cylinder and the sphere have equal value;
This implies that the height of the cylinder equals the diameter of the sphere. In other words
[tex]h = D[/tex] , where D represents diameter of the sphere
Recall that [tex]D = 2r[/tex]
So, [tex]h = D = 2r[/tex]
[tex]h = 2r[/tex]
Substitute 2r for h in equation 1
[tex]V = \frac{28r}{2r}[/tex]
[tex]V = \frac{28}{2}[/tex]
[tex]V = 14[/tex]
Hence, the volume of the sphere is 14m³
Answer:
14 m³
Step-by-step explanation:
We have:
[tex]Cylinder:\\\R-\text{radius}\\H=2R-\text{height}\\V_C-\text{volume};\ V_C=21m^3\\\\\text{the formula of a volume of a cylinder:}\ V=\pi R^2H\\\\V_C=\pi R^2(2R)=2\pi R^3[/tex]
[tex]Sphere:\\\R-\text{radius}\\V_S-\text{volume}\\\\\text{the formula of a volume of a sphere:}\ V=\dfrac{4}{3}\pi R^3[/tex]
[tex]Let's\ transform\ V_C:\\\\2\pi R^3=21\qquad\text{divide both sides by 2}\\\\\pi R^3=\dfrac{21}{2}\qquad\text{multiply both sides by}\ \dfrac{4}{3}\\\\\dfrac{4}{3}\pi R^3=\dfrac{21}{2}\cdot\dfrac{4}{3}\to V_S=\dfrac{(21:3)\cdot(4:2)}{(2:2)\cdot(3:3)}=\dfrac{7\cdot2}{1\cdot1}=\dfrac{14}{1}=14\ (m^3)[/tex]