Respuesta :

Answer:

The volume of the sphere is 14m³

Step-by-step explanation:

Given

Volume of the cylinder = [tex]21m^3[/tex]

Required

Volume of the sphere

Given that the volume of the cylinder is 21, the first step is to solve for the radius of the cylinder;

Using the volume formula of a cylinder

The formula goes thus

[tex]V = \pi r^2h[/tex]

Substitute 21 for V; this gives

[tex]21 = \pi r^2h[/tex]

Divide both sides by h

[tex]\frac{21}{h} = \frac{\pi r^2h}{h}[/tex]

[tex]\frac{21}{h} = \pi r^2[/tex]

The next step is to solve for the volume of the sphere using the following formula;

[tex]V = \frac{4}{3}\pi r^3[/tex]

Divide both sides by r

[tex]\frac{V}{r} = \frac{4}{3r}\pi r^3[/tex]

Expand Expression

[tex]\frac{V}{r} = \frac{4}{3}\pi r^2[/tex]

Substitute [tex]\frac{21}{h} = \pi r^2[/tex]

[tex]\frac{V}{r} = \frac{4}{3} * \frac{21}{h}[/tex]

[tex]\frac{V}{r} = \frac{84}{3h}[/tex]

[tex]\frac{V}{r} = \frac{28}{h}[/tex]

Multiply both sided by r

[tex]r * \frac{V}{r} = \frac{28}{h} * r[/tex]

[tex]V = \frac{28r}{h}[/tex] ------ equation 1

From the question, we were given that the height of the cylinder and the sphere have equal value;

This implies that the height of the cylinder equals the diameter of the sphere. In other words

[tex]h = D[/tex] , where D represents diameter of the sphere

Recall that [tex]D = 2r[/tex]

So, [tex]h = D = 2r[/tex]

[tex]h = 2r[/tex]

Substitute 2r for h in equation 1

[tex]V = \frac{28r}{2r}[/tex]

[tex]V = \frac{28}{2}[/tex]

[tex]V = 14[/tex]

Hence, the volume of the sphere is 14m³

gmany

Answer:

14 m³

Step-by-step explanation:

We have:

[tex]Cylinder:\\\R-\text{radius}\\H=2R-\text{height}\\V_C-\text{volume};\ V_C=21m^3\\\\\text{the formula of a volume of a cylinder:}\ V=\pi R^2H\\\\V_C=\pi R^2(2R)=2\pi R^3[/tex]

[tex]Sphere:\\\R-\text{radius}\\V_S-\text{volume}\\\\\text{the formula of a volume of a sphere:}\ V=\dfrac{4}{3}\pi R^3[/tex]

[tex]Let's\ transform\ V_C:\\\\2\pi R^3=21\qquad\text{divide both sides by 2}\\\\\pi R^3=\dfrac{21}{2}\qquad\text{multiply both sides by}\ \dfrac{4}{3}\\\\\dfrac{4}{3}\pi R^3=\dfrac{21}{2}\cdot\dfrac{4}{3}\to V_S=\dfrac{(21:3)\cdot(4:2)}{(2:2)\cdot(3:3)}=\dfrac{7\cdot2}{1\cdot1}=\dfrac{14}{1}=14\ (m^3)[/tex]

ACCESS MORE