Answer:
vx = 10.09 m/s
vy = 29.31 m/s
t = 5.98 s
ymax = 43.83 m
xmax = 60.37 m
Explanation:
A) The horizontal speed is constant in the complete trajectory. It is given by:
[tex]v_x=v_ocos\theta\\\\v_x=(31m/s)(cos71\°)=10.09\frac{m}{s}[/tex]
B) The vertical initial speed is:
[tex]v_y=v_osin\theta\\\\v_y=(31m/s)(sin71\°)=29.31\frac{m}{s}[/tex]
C) The flight time is given by:
[tex]t=\frac{2v_osin\theta}{g}\\\\t=\frac{2(31m/s)(sin71\°)}{9.8m/s^2}=5.98s[/tex]
D) The maximum height is:
[tex]y_{max}=\frac{v_o^2sin^2\theta}{2g}\\\\y_{max}=\frac{(31m/s)^2(sin71\°)^2}{2(9.8m/s)}=43.83m[/tex]
E) The maximum horizontal distance is:
[tex]x_{max}=\frac{v_o^2sin2\theta}{g}\\\\x_{max}=\frac{(31m/s)^2sin(2*71\°)}{9.8m/s^2}=60.37m[/tex]