Answer:
Option a is correct
Step-by-step explanation:
Given: [tex]3x^4+x^2-1[/tex]
To find: roots of the equation
Solution:
A number x is a root of an equation if it satisfies the equation. It is a real root if it is also a real number.
[tex]3x^4+x^2-1[/tex]
Take [tex]y=x^2[/tex]
[tex]3x^4+x^2-1=3y^2+y-1[/tex]
For an equation of the form [tex]ay^2+by+c=0[/tex], roots are given by [tex]y=\frac{-1\pm \sqrt{1+12}}{6}[/tex]
So,
[tex]x^2=\frac{-1\pm \sqrt{1+12}}{6}=\frac{-1\pm \sqrt{13}}{6}\\x=\pm \sqrt{\left ( \frac{-1\pm \sqrt{13}}{6} \right )}[/tex]
Real zeroes:
[tex]x=\pm \sqrt{\left ( \frac{-1+\sqrt{13}}{6} \right )}\\=\pm \sqrt{\left ( \frac{-1+ 3.61}{6} \right )}\\=\pm \sqrt{\left ( \frac{2.61}{6} \right )} \\=\pm \sqrt{0.44}\\=\pm 0.7[/tex]