Respuesta :

Answer:

Option a is correct

Step-by-step explanation:

Given: [tex]3x^4+x^2-1[/tex]

To find: roots of the equation

Solution:

A number x is a root of an equation if it satisfies the equation. It is a real root if it is also a real number.

[tex]3x^4+x^2-1[/tex]

Take [tex]y=x^2[/tex]

[tex]3x^4+x^2-1=3y^2+y-1[/tex]

For an equation of the form [tex]ay^2+by+c=0[/tex], roots are given by [tex]y=\frac{-1\pm \sqrt{1+12}}{6}[/tex]

So,

[tex]x^2=\frac{-1\pm \sqrt{1+12}}{6}=\frac{-1\pm \sqrt{13}}{6}\\x=\pm \sqrt{\left ( \frac{-1\pm \sqrt{13}}{6} \right )}[/tex]

Real zeroes:

[tex]x=\pm \sqrt{\left ( \frac{-1+\sqrt{13}}{6} \right )}\\=\pm \sqrt{\left ( \frac{-1+ 3.61}{6} \right )}\\=\pm \sqrt{\left ( \frac{2.61}{6} \right )} \\=\pm \sqrt{0.44}\\=\pm 0.7[/tex]

RELAXING NOICE
Relax