Respuesta :

Answer:

The answer for the distance:

[tex]d \approx 11.3[/tex]

Step-by-step explanation:

You first need the distance formula:

[tex]d = \sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2}[/tex]

-Use the two points (-2,4) and (6,-4) for the distance formula:

[tex]d = \sqrt{(6+2)^2+(-4-4)^2}[/tex]

-Then, solve the equation to get the distance:

[tex]d = \sqrt{(6+2)^2+(-4-4)^2}[/tex]

[tex]d = \sqrt{(8)^2+(-8)^2}[/tex]

[tex]d = \sqrt{64+64}[/tex]

[tex]d = \sqrt{128}[/tex]

[tex]d = 8\sqrt{2} \approx 11.31[/tex]

-Round to the nearest tenth:

[tex]d \approx 11.3[/tex]

So, therefore, the answer for the distance is [tex]d \approx 11.3[/tex] .

ACCESS MORE