Answer:
The answer for the distance:
[tex]d \approx 11.3[/tex]
Step-by-step explanation:
You first need the distance formula:
[tex]d = \sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2}[/tex]
-Use the two points (-2,4) and (6,-4) for the distance formula:
[tex]d = \sqrt{(6+2)^2+(-4-4)^2}[/tex]
-Then, solve the equation to get the distance:
[tex]d = \sqrt{(6+2)^2+(-4-4)^2}[/tex]
[tex]d = \sqrt{(8)^2+(-8)^2}[/tex]
[tex]d = \sqrt{64+64}[/tex]
[tex]d = \sqrt{128}[/tex]
[tex]d = 8\sqrt{2} \approx 11.31[/tex]
-Round to the nearest tenth:
[tex]d \approx 11.3[/tex]
So, therefore, the answer for the distance is [tex]d \approx 11.3[/tex] .