Tyler simplified the expression x Superscript negative 3 Baseline y Superscript negative 9. His procedure is shown below.


x Superscript negative 3 Baseline y Superscript negative 9 = StartFraction 1 Over x cubed EndFraction times StartFraction 1 Over y Superscript negative 9 EndFraction = StartFraction 1 Over x cubed y Superscript negative 9 EndFraction


What is Tyler’s error?

Both powers should be in the numerator with positive exponents.

Both powers should be in the denominator with positive exponents.

The power x cubed should be in the numerator and the power y Superscript 9 in the denominator.

The power y Superscript 9 should be in the numerator and the power x cubed in the denominator.

Respuesta :

Answer:

D. The power y Superscript 9 should be in the numerator and the power x cubed in the denominator.

Step-by-step explanation:

The correct simplification is the following:

[tex]\frac{x^{-3}}{y^{-9}} = [/tex]

[tex]= \frac{1}{x^3} \times \frac{1}{y^{-9}} =[/tex]

[tex]= \frac{1}{x^3} \times y^{9} =[/tex]

[tex]= \frac{y^{9}}{x^3}[/tex]

Answer:

The answer is D)  

Start Fraction 1 Over r Superscript 7 Baseline End Fraction + Start Fraction 1 Over s Superscript 12 End Fraction

Step-by-step explanation:

Did the Test Zero & Negative Exponents on Engenuity.

RELAXING NOICE
Relax