Use the Law of Cosines to find the values of x and y. (PLEASE HELPPP!!!!)

Answer:
[tex]x = 49.8^\circ\\y = 54.6^\circ[/tex]
Step-by-step explanation:
Kindly refer to the image attached in the answer region for labeling of triangle.
AB = 16
BC = 19
AC = 15
[tex]\angle ABC = x^\circ\\\angle ACB = y^\circ[/tex]
We have to find the angles x and y i.e. [tex]\angle B \text{ and }\angle C[/tex].
Formula for cosine rule:
[tex]cos B = \dfrac{a^{2}+c^{2}-b^{2}}{2ac}[/tex]
Where
a is the side opposite to [tex]\angle A[/tex],
b is the side opposite to [tex]\angle B[/tex] and
c is the side opposite to [tex]\angle C[/tex].
[tex]\Rightarrow cos x = \dfrac{19^{2}+16^{2}-15^{2}}{2 \times 19 \times 16}\\\Rightarrow cos x = \dfrac{392}{608} \\\Rightarrow x = 49.8^\circ[/tex]
Similarly, for finding the value of y:
[tex]cos C = \dfrac{a^{2}+b^{2}-c^{2}}{2ab}\\\Rightarrow cos y = \dfrac{19^{2}+15^{2}-16^{2}}{2 \times 19 \times 15}\\\Rightarrow cos y = \dfrac{330}{570}\\\Rightarrow y = 54.6^\circ[/tex]
Hence, the values are:
[tex]x = 49.8^\circ\\y = 54.6^\circ[/tex]