Answer:
The area of the sector should be 9.42[tex]cm^2[/tex] .
Step-by-step explanation:
-The formula for finding the area of a sector:
[tex]A = \frac{Arc}{360} \pi r^2[/tex]
-Next use the arc measure and the radius in order to solve and get the answer:
[tex]A = \frac{120\textdegree}{360\textdegree}\pi 3^2[/tex]
-Solve:
[tex]A = \frac{120\textdegree}{360\textdegree}\pi 3^2[/tex]
[tex]A = \frac{120\textdegree}{360\textdegree}\pi \times3^2[/tex]
[tex]A = \frac{1}{3} \pi \times 3^2[/tex]
[tex]A = \frac{1}{3} \pi \times 9[/tex]
[tex]A = 3\pi \approx 9.424[/tex]
-Round to the nearest hundredth:
[tex]A \approx 9.42[/tex]