The central angle of an arc measures 120° The radius of the circle measures 3 cm what is the area of the sector to the nearest hundredth of a square centimeter

Respuesta :

Answer:

The area of the sector should be 9.42[tex]cm^2[/tex] .

Step-by-step explanation:

-The formula for finding the area of a sector:

[tex]A = \frac{Arc}{360} \pi r^2[/tex]

-Next use the arc measure and the radius in order to solve and get the answer:

[tex]A = \frac{120\textdegree}{360\textdegree}\pi 3^2[/tex]

-Solve:

[tex]A = \frac{120\textdegree}{360\textdegree}\pi 3^2[/tex]

[tex]A = \frac{120\textdegree}{360\textdegree}\pi \times3^2[/tex]

[tex]A = \frac{1}{3} \pi \times 3^2[/tex]

[tex]A = \frac{1}{3} \pi \times 9[/tex]

[tex]A = 3\pi \approx 9.424[/tex]

-Round to the nearest hundredth:

[tex]A \approx 9.42[/tex]

ACCESS MORE