Respuesta :
Answer:
Step-by-step explanation:
[tex]A = lw \nl\frac{\dA}{\dt}[/tex] =[tex]\frac{\dA}{\text{d}l}\frac{\text{d}l}{\dt} + \frac{\dA}{\text{d}w}\frac{\text{d}w}{\dt}[/tex] =[tex]w\frac{\text{d}l}{\dt} + l\frac{\text{d}w}{\dt}[/tex] [tex]\nll = 20 \text{ cm}[/tex] \;\; [tex]\frac{\text{d}l}{\dt} = 8 \text{ cm/s}[/tex] \;\;w = 10 \text{ cm}, \;\; [tex]]\frac{\text{d}w}{\dt} = 3 \text{ cm/s}[/tex] [tex]\nl\frac{\dA}{\dt} =( 10 \text{ cm} )( 8 \text{ cm/s} ) + ( 20 \text{ cm} )( 3 \text{ cm/s} ) =140 \text{ cm}^2\!\text{/s} [/tex]
Given :
- The length of a rectangle is increasing at a rate of 4 cm/s and its width is increasing at a rate of 8 cm/s. When the length is 8 cm and the width is 5 cm .
To find :-
- how fast is the area of the rectangle increasing?
Solution :-
As we know that :-
- A = lb
To find the rate :-
- d(A)/dt = d(lb)/dt .
Differenciate :-
- dA/dt = l (db/dt ) + b (dl/dt )
Substitute :-
- dA/dt = 8*8 + 5*4
- dA/dt = 64 + 20 cm²/s
- dA/dt = 84 cm²/s