Answer:
[tex]\omega=0.37 [rad/s][/tex]
Explanation:
We can use the conservation of the angular momentum.
[tex]L=mvR[/tex]
[tex]I\omega=mvR[/tex]
Now the Inertia is I(professor_stool) plus mR², that is the momentum inertia of a hoop about central axis.
So we will have:
[tex](I_{proffesor - stool}+mR^{2})\omega=mvR[/tex]
Now, we just need to solve it for ω.
[tex]\omega=\frac{mvR}{I_{proffesor-stool}+mR^{2}}[/tex]
[tex]\omega=\frac{1.5*2.7*0.4}{4.1+1.5*0.4^{2}}[/tex]
[tex]\omega=0.37 [rad/s][/tex]
I hope it helps you!