Respuesta :
We have been given that in ΔJKL, k = 22 cm, ∠L=23° and ∠J=26°. We are asked to find the length of j to the nearest tenth of a centimeter.
We will use law of sines to solve for side j.
[tex]\frac{a}{\text{sin}(A)}=\frac{b}{\text{sin}(B)}=\frac{c}{\text{sin}(C)}[/tex], where, a, b and c are opposite sides to angles A, B and C respectively.
We need to find measure of angle K to apply law of sine to our given problem.
Using angle sum property, we will get:
[tex]\angle J+\angle K+\angle L=180^{\circ}[/tex]
[tex]26^{\circ}+\angle K+23^{\circ}=180^{\circ}[/tex]
[tex]\angle K+49^{\circ}=180^{\circ}[/tex]
[tex]\angle K+49^{\circ}-49^{\circ}=180^{\circ}-49^{\circ}[/tex]
[tex]\angle K=131^{\circ}[/tex]
[tex]\frac{j}{\text{sin}(J)}=\frac{k}{\text{sin}(K)}[/tex]
[tex]\frac{j}{\text{sin}(26^{\circ})}=\frac{22}{\text{sin}(131^{\circ})}[/tex]
[tex]\frac{j}{\text{sin}(26^{\circ})}\cdot \text{sin}(26^{\circ})=\frac{22}{\text{sin}(131^{\circ})}\cdot \text{sin}(26^{\circ})[/tex]
[tex]j=\frac{22}{0.754709580223}\cdot 0.438371146789[/tex]
[tex]j=\frac{9.644165229358}{0.754709580223}[/tex]
[tex]j=12.77864423889[/tex]
Upon rounding to nearest tenth, we will get:
[tex]j\approx 12.8[/tex]
Therefore, the length of j is approximately 12.8 cm.