Answer:
98% of confidence interval of Population proportion is determined by
(0.60683 ,0.67217)
Step-by-step explanation:
Given the sample size n = 1168
Given 747 out of 1168 female 12th graders said they always use a seatbelt when driving
The sample proportion 'p' = [tex]\frac{x}{n} = \frac{747}{1168} = 0.6395[/tex]
98% of confidence interval of Population proportion is determined by
[tex]p^{-} -Z_{\frac{\alpha }{2} } \sqrt{\frac{p^{-} (1-p^-)}{n} }, p^- +Z_{\frac{\alpha }{2} } \sqrt{\frac{p^-(1-p^-)}{n} } }[/tex]
The tabulated value Zā.āā score Ā = 2.326
[tex](0.6395 -2.326 \sqrt{\frac{0.6395(1-0.6395)}{1168} }, 0.6395 +2.326 \sqrt{\frac{0.6395(1-0.6395)}{1168} } })[/tex]
on calculation , we get
(0.6395 -0.03267 , 0.6395 +0.03267)
(0.60683 ,0.67217)