Answer:
The answer to this question can be defined as follows:
a)
cosine: 0.707
correlation: 0
Euclidean: 3.16
b)
cosine: 1
correlation: 1
Euclidean: 0
Jaccard: 1
c)
cosine: -0.4082
correlation: 0.5774
Euclidean: 2.64
d)
cosine: -0.333
correlation: -0.3333
Jaccard: 0.5
e)
cosine: -0.7075
correlation: 0.2132
Step-by-step explanation:
a) cosine:
[tex]x \times y( 0 \times 2+ 0 \times 2 +1 \times 2+1 \times 2) = 4\\\\ x= \sqrt{2} = 1.414\\\\y= \sqrt(16)=4\\\\\cos (x\times y) = \frac{x\times y}{x\times y}\\\\\cos (x\times y) = \frac{4}{1.414\times 4}\\\\= 0.707[/tex]
correlation:
[tex]\ corr(x,y) =[\frac{covariance (x,y)}{standec(x) \times standdev(y)}]\\X \ mean = 0.5\\Y \ mean = 2\\covariance (x,y) = 0\\standdev(x) = 0.5774\\standdev(y) = 0\\corr(x,y) = 0[/tex]
Euclidean:
[tex]d(x,y) = \sqrt((0-2)^2+(0-2)^2+(1-2)^2+(1-2)^2)\\d(x,y) = 4+4+1+1\\d(x,y)= \sqrt(10)\\d(x,y)= 3.16\\[/tex]
by applying above formula we get all the values.
b)
cosine: 1
correlation: 1
Euclidean: 0
Jaccard: 1
c)
cosine: -0.4082
correlation: 0.5774
Euclidean: 2.64
d)
cosine: -0.333
correlation: -0.3333
Jaccard: 0.5
e)
cosine: -0.7075
correlation: 0.2132