Answer:
The answer is "$ 3,005,010.27".
Explanation:
Let those cash flows be in millions of dollars
[tex]NPV = -20+(\fatc{2.5}{1.12}+\frac{2.5}{1.12^2}+...+\frac{2.5}{1.12^{10}} +\frac{5}{1.12^9}+\frac{5}{1.12^{10}}+...+\frac{5}{1.12^{20}} - \frac{K}{1.12^5}+\frac{K}{1.12^{10}}+ \frac{K}{1.12^{15}})[/tex]
[tex]\ max \ value \ of \ K \ so, \ NPV = 0\\\\ \Rightarrow -20+(\frac{2.5}{1.12}+\frac{2.5}{1.12^2}+...+\frac{2.5}{1.12^{10}} +\frac{5}{1.12^9}+\frac{5}{1.12^{10}}+...+\frac{5}{1.12^{20}}) - (\frac{K}{1.12^5}+\frac{K}{1.12^{10}}+ \frac{K}{1.12^{15}}) = 0[/tex]
[tex]\Rightarrow -20+\frac{2.5}{0.12}\times(1-\frac{1}{1.12^{10}})+ \frac{1}{1.12^{10}}\times \frac{5}{0.12}\times (1-\frac{1}{1.12^{10}})- 1.072096*K = 0 \\\\\Rightarrow 3.221661 = 1.072096*K \\\\\Rightarrow K = 3.00501 \\[/tex]
The value of k = "$ 3,005,010.27".