Answer:
t = 5.94x10⁹ years.
Explanation:
The time of the explosion can be calculated using the decay equation:
[tex] N_{t} = N_{0}e^{-\lambda t} [/tex]
Where:
N(t): is the quantity of the element at the present time
N(0): is the quantity of the element at the time of explosion
λ: is the decay constant
t: is the time
Knowing that the present U-235/U-238 ratio is 0.00700 and that at the time of the explosion there were equal amount of U-235 and U-238, we have:
[tex]\frac{N_{U-235}}{N_{U-238}} = \frac{N_{U-235_{0}}e^{-\lambda_{U-235} t}}{N_{U-238_{0}}e^{-\lambda_{U-238} t}}[/tex] (1)
The decay constant is equal to:
[tex] \lambda = \frac{ln(2)}{t_{1/2}} [/tex]
For the U-235 we have:
[tex] \lambda_{U-235} = \frac{ln(2)}{0.700 \cdot 10^{9} y} = 9.90 \cdot 10^{-10} y^{-1} [/tex]
For the U-238 we have:
[tex] \lambda_{U-238} = \frac{ln(2)}{4.47 \cdot 10^{9} y} = 1.55 \cdot 10^{-10} y^{-1} [/tex]
By introducing the values of [tex]\lambda_{U-235}[/tex] and [tex]\lambda_{U-238}[/tex] into equation (1) we have:
[tex]0.00700 = \frac{e^{-9.90 \cdot 10^{-10} t}}{e^{-1.55 \cdot 10^{-10} t}}[/tex]
[tex]0.00700 = e^{(-9.90 \cdot 10^{-10} + 1.55 \cdot 10^{-10}) t}[/tex]
[tex]ln(0.00700) = (-9.90 \cdot 10^{-10} + 1.55 \cdot 10^{-10}) t[/tex]
[tex]t = \frac{ln(0.00700)}{-9.90 \cdot 10^{-10} + 1.55 \cdot 10^{-10}} = 5.94 \cdot 10^{9} y[/tex]
Therefore, the star exploded 5.94x10⁹ years ago.
I hope it helps you!