Answer:
a)14.17V
b)32.8 x [tex]10^-^1^2[/tex]J
c)96.9x [tex]10^-^1^2[/tex]J
d) -64x [tex]10^-^1^2[/tex]J
Explanation:
Given:
Area 'A'=7.10cm² =>7.1 x [tex]10^-^4[/tex]m²
voltage '[tex]V_o[/tex]'=4.8 volt
[tex]d_o[/tex] = 2.20mm => 2.2 x [tex]10^-^3[/tex]m
[tex]d_1[/tex] = 6.50mm => 6.5 x [tex]10^-^3[/tex]m
a) Capacitance [tex]C_o[/tex] before push is given by:
[tex]C_o[/tex] = εA/[tex]d_o[/tex] =>[tex]\frac{(8.85*10^-^1^2)(7.1*10^-^4)}{2.2*10^-^3}[/tex]
[tex]C_o[/tex] = 2.85 x [tex]10^-^1^2[/tex] F
[tex]q_o[/tex]=[tex]C_o[/tex][tex]V_o[/tex]=> 2.85 x [tex]10^-^1^2[/tex] x 4.8
[tex]q_o[/tex]=1.37 x [tex]10^-^1^1[/tex] C
Capacitance [tex]C_1[/tex] after push is given by:
[tex]C_1[/tex] = εA/[tex]d_1[/tex] =>[tex]\frac{(8.85*10^-^1^2)(7.1*10^-^4)}{6.5*10^-^3}[/tex]
[tex]C_1[/tex] = 9.66 x [tex]10^-^1^3[/tex]F
[tex]q_o[/tex]=[tex]q_1[/tex]
[tex]q_1[/tex]=[tex]C_1[/tex][tex]V_1[/tex]
Therefore, the potential difference between the plates
[tex]V_1[/tex] = 1.37 x [tex]10^-^1^1[/tex] / 9.66 x [tex]10^-^1^3[/tex] =>14.17V
b) [tex]U_i=\frac{1}{2}C_oV_o^2 => \frac{1}{2} (2.85*10^-^1^2)(4.8^2)[/tex]
[tex]U_i=[/tex] 32.8 x [tex]10^-^1^2[/tex]J
c)[tex]U_f=\frac{1}{2}C_1V_1^2 => \frac{1}{2} (9.66*10^-^1^3)(14.17^2)[/tex]
[tex]U_f[/tex]= 96.9x [tex]10^-^1^2[/tex]J
d) the work required to separate the plates is given by:
workdone= [tex]U_i[/tex]-[tex]U_f[/tex]=> 32.8 x [tex]10^-^1^2[/tex]J- 96.9x [tex]10^-^1^2[/tex]J
W≈ -64x [tex]10^-^1^2[/tex]J