Respuesta :
Answer:
[tex]\dfrac{3}{10}[/tex]
Step-by-step explanation:
Length of an arc[tex]=\dfrac{\theta}{2\pi}X 2\pi r=\theta r[/tex]
If the central angle of the arc is [tex]\dfrac{3\pi}{5}[/tex]
Length of an arc[tex]=\dfrac{3\pi r}{5}[/tex]
Therefore:
Ratio of the length of the arc to the circumference
[tex]=\dfrac{3\pi r}{5}:2\pi r\\=\dfrac{3\pi r}{5*2\pi r}\\=\dfrac{3}{10}[/tex]
Therefore, the arc is [tex]\dfrac{3}{10}[/tex] of the circumference is this arc.