An arc subtends a central angle measuring \dfrac{3\pi}{5} 5 3π ​ start fraction, 3, pi, divided by, 5, end fraction radians. What fraction of the circumference is this arc?

Respuesta :

Answer:

[tex]\dfrac{3}{10}[/tex]

Step-by-step explanation:

Length of an arc[tex]=\dfrac{\theta}{2\pi}X 2\pi r=\theta r[/tex]

If the central angle of the arc is [tex]\dfrac{3\pi}{5}[/tex]

Length of an arc[tex]=\dfrac{3\pi r}{5}[/tex]

Therefore:

Ratio of the length of the arc to the circumference

[tex]=\dfrac{3\pi r}{5}:2\pi r\\=\dfrac{3\pi r}{5*2\pi r}\\=\dfrac{3}{10}[/tex]

Therefore, the arc is [tex]\dfrac{3}{10}[/tex] of the circumference is this arc.

Answer: 3 /10

Step-by-step explanation: Khan Academy

ACCESS MORE