Answer:
The velocity of the ball after collision is [tex]v_{2x} = -4 m/s[/tex]
Explanation:
From the question we are told that
The mass of the ball is [tex]m_b = 1.00\ kg[/tex]
The velocity of the ball is [tex]v_{1x}= 12.0 \ m/s[/tex]
The mass of the rectangular door is [tex]m_d = 30 \ kg[/tex]
The width of the door is [tex]a = 1.00 \ m[/tex]
The distance of impact from the hinge is [tex]L = 75 \ cm = \frac{75}{100} = 0.75 \ m[/tex]
The angular speed of the door is [tex]w = 1.20 \ rad/s[/tex]
So the moment of inertia of the door is given from the question as
[tex]I = \frac{1}{3} M a^2[/tex]
substituting values
[tex]I = \frac{1}{3} * 30 * (1)[/tex]
[tex]I = 10 \ kg \cdot m^2[/tex]
According to the law of angular momentum conservation
[tex]L_i = L_f[/tex]
Where [tex]L_i[/tex] is the initial angular momentum of the system(the door and the ball) which is mathematically represented as
[tex]L_i = m_b * v_{1x} + Iw_i[/tex]
so [tex]w_i[/tex] is the initial angular speed of the door which is zero
So
[tex]L_i = m_b * v_{1x}[/tex]
[tex]L_f[/tex] is the final angular momentum of the system(the door and the ball) which is mathematically represented as
[tex]L_f = I w + m_b v_{2x} * L[/tex]
So
[tex]m_b * v_{1x} = I w + m_b v_{2x} * L[/tex]
Substituting values
[tex]1 * 12 * 0.75 = 10* 1.2 * v_{2x} * 0.75[/tex]
[tex]v_{2x} = -4 m/s[/tex]
The negative sign show a reversal in the balls direction