Answer:
(a). Σx= 108, Σx^2 = 4984, Σy^2 = 2,157.
(b). 10.8, 0.1.
(C) and (d) => check explanation.
Step-by-step explanation:
To Calculate for Σx we will have to add all the values for x that is the summation of x-values.
Σx = 11 + 0 + 36 + 22 + 34 + 24 + 25 + -11 + -11 + -22 = 108.
Σx^2 = 11 × 11 + 0 × 0 + 36 × 36 + 22 × 22 + 34 × 34 + 24 ×24 + 25 × 25 + -11 × -11 + -11 × -11 + -22 × -22 = 4984.
Σy^2 = 9× 9 + -3 × -3 + 28 ×28 + 14 × 14 + 23 × 23 + 16 × 16 + 14× 14 + -3 ×-3 + -4 × -4 + -9 × -9= 2,157.
(b). Sample mean for x = 108/10 = 10.8.
Variance for x:
11 - 10.8 = 0.3
0 - 10.8 = -10.8
36 - 10.8 =25.2.
22 - 10.8=11.2.
34 - 10.8 = 23.2
24 -10.8 = 13.2.
25 - 10.8= 14.2
-11 - 10.8 = -21.8.
-11 - 10.8 = - 21.8
-22 -10.8 = -32.8.
Total=0.1
Standard deviation for x = √ s^2 = 0.3162
This can be done for y too
(c). 75% Chebyshev interval around the mean for x values = 10.8 + 2 (0.3162); 10.8 - 2(0.3162).
=> (11.4324, 10.1676).
(d). The coefficient of variation= (0.3162)/10.8 × 100 = 2.92%.